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Abstract

Synthetic biology is the engineering view on biotechnology that ultimately aims at
fulfilling the quest of building an artificial cell. From the very first attempts of
synthesizing life, this subject has made an impact on the media through, very often,
misleading headlines and news. We review here the historical journalistic approach on
synthetic biology and related disciplines, from the early twentieth century to the lastest
achievements on designing protocells or genome reduction. However, it would be very
naive to consider the research community and the media to be unidirectionally linked,
with the latter being mere displayers (and disrupters) of the research “reality”. On the
contrary, the research community has also received a strong influence from the media,
as evidenced by statements from researchers, common metaphors and, even, a trend
to unconsciously develop shared techno-social paradigms. We conclude that, beyond
overstatements from researchers and journalists’ misunderstandings, both communities
provide strong feedback to each other and, together, contribute to define the dream
that synthetic biologists are aiming for.

Keywords: Synthetic life, Artificial life, Social media, History of biology, Popular science,
Minimal cell

Introduction
Synthetic biology is a term that, during the last 15 years, has shown an exponential oc-

currence in scientific literature, and has been a flagship for funding agencies for in-

novative research and for emergent technologies. The term actually refers to several

approaches that aim at synthesizing new forms of life in the laboratory, including the

search for minimal genomes (or top down strategy), the development of complex

chemical mixtures performing life-like activities (or bottom up approach), the expand-

ing of the genetic code and the amino acid repertoire beyond the natural one (or xeno-

biology) or the extension of classical metabolic engineering into new and unnatural

processes (Acevedo-Rocha 2016). In most projects, the ultimate aim is the implemen-

tation of new devices with practical applications (Morange 2009; Friedman and Elling-

ton 2015; Nielsen and Keasling 2016), although some scientists also anticipate that the

making of life through synthetic biology will increase our understanding of it (Benner

2003; Szathmáry 2004; Keller 2009). An underlying assumption for most synthetic biol-

ogists is that engineering principles (i.e. standardization, decoupling, modularity, ab-

straction, orthogonality) can be extrapolated to biological objects (Endy 2005;
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Ausländer et al., 2017), although there is a long tradition of criticisms to this strongly

mechanistic view of life (Nicholson 2014; Porcar and Peretó 2016).

A wide group of scientists and engineers recognize themselves as members of a

synthetic biology community, and global collaborative networks, new scientific journals,

recurring meetings and international contests (like the international Genetically Engi-

neered Machine –iGEM– competition) demonstrate that the label “Synthetic Biology”

has been successful, although some voices raise concerns about the pertinence of the

term. In short, science and the market have enthusiastically adopted the term but, as

recognized by Nerlich and McLeod (2016) “Synthetic Biology is still not a topic of pub-

lic interest”. Nevertheless, the prospect of an artificial life created in a laboratory has

attracted the media’s interest for over a century. The terrifying possibility of animating

dead matter was supported by several research lines, like galvanism, and was a mesmer-

izing attractor for many writers and journalist’s attention, as well as serving as an

inspirational source 200 years ago for Mary W. Shelley’s masterwork “Frankenstein or

the modern Prometheus”. For most scientists, however, the prospect of making life in

the laboratory was a very difficult, yet reachable in a remote future, possibility. As it

has been analyzed elsewhere, there were several scientists, convinced materialists work-

ing in diverse cultural contexts, that pursued a sincere effort to cross the border be-

tween the inorganic and the living worlds (Peretó 2016). In the first part of this work

we present some historical cases illustrating that the quest for a deeper understanding

of the nature and origin of life has been seen, by the popular press but also by some

scientists, as attempts to artificially create life in a test tube. We also analyze here the

bidirectional influences between scientists and communicators that shape the ambitions

of the synthetic biology community.

Chronicle of a synthetic life foretold
The similarities among the motivations behind some of the research programs in biol-

ogy a century ago and the extant ambitions in the synthetic biology community are sur-

prising, as well as the parallelisms between the media responses evoked by scientists’

achievements. The news coverage of early synthetic biology experiments was so persua-

sive that the general discussion, even among scientists, was not whether the creation of

life would be possible, but rather when it would occur (Turney 1998; Keller 2002).

Among the pioneers of an engineering approach to the synthesis of life we recognize

Jacques Loeb (Pauly 1987). He discovered artificial parthenogenesis and developed a

coherent ideology on understanding life through the synthesis and complete control of

it. For Loeb, living organisms were –literally, not metaphorically– chemical machines

that, one day, would be fully manufactured in a laboratory (Loeb 1904), and hence for

him “experimental abiogenesis” (or the original evolution of life from inorganic or

inanimate substances) was the “goal of biology” (Loeb 1906). We could consider Loeb

as a forerunner of the harder version of current synthetic biology, in which the engin-

eering approach to biology is based on a materialistic and extremely mechanistic view

of life and on Loeb’s proposal of knowing life through synthesis, rather than analysis

(Deichmann 2009; Pauly 1987; Keller 2009; Keller 2002). Also, following Keller’s (2002)

distinction –inspired by (Gruenberg 1911b)– of two senses of the term “artificial life”,

Loeb represented the efforts of building biological explanations through the “artificial

synthesis of life” –like the artificial induction of development in unfertilized eggs.
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However, other scientists, marginalized by the official history of biology, used the “syn-

thesis of artificial life” as a model to study of the origin and nature of life. In retrospect,

the achievements of scientists like Alfonso L. Herrera with his “Plasmogeny” (Herrera

1942; Ledesma-Mateos and Barahona 2003; Cleaves et al. 2014), John Burke with his

“radiobes” (Burke 1905a; Burke 1905b; Campos 2015) or Stéphane Leduc with his im-

pressive osmotic growths (Leduc 1910; Leduc 1912; Keller 2002) could be seen as ec-

centric efforts to understand the origin and nature of life, although they should be

better contextualized as relevant episodes in the history of biological explanations, en

route to the full secularization of the studies of living objects (Keller 2002; Keller 2009;

Peretó and Català 2007; Peretó 2016).

John B. Burke investigated the effect of radium salts on standard microbiology culture

media and described, at the beginning of twentieth century, the generation of what he

named “radiobes”, which he thought were primitive biological forms (Burke 1905a;

Burke 1905b; Peretó 2016). In a comprehensive study of Burke’s work, historian Luis

Campos has collected and analysed the extensive coverage of radiobes in newspapers

from both sides of the Atlantic (Campos 2015), showing that Burke’s and Loeb’s find-

ings were commonly seen by the popular press as related works associated with the

synthesis of artificial life. Although, for some journalists, Burke’s experiments implied

that the creation of life was just a reasonable possibility for the near future, for others

radiobes were an example of fully accomplished artificial life. Some headlines were as

explicit as “Generation by radium: Cambridge professor reported to have produced arti-

ficial life” (The New York Times, July 16, 1905), although Burke never claimed that he

had actually synthesized life (Campos 2015).

The antivitalistic position was a common feature of the early attempts to synthesize

life, and this aspect was perfectly understood by strongly ideologized scientists, particu-

larly, Catholic priests involved in scientific research and teaching (Peretó and Català

2012; Peretó and Català 2017). Nevertheless, for scientists involved in the pioneering

work of disentangling the chemical complexity of cells, including Loeb himself (Loeb

1920; Pauly 1987; Deichmann 2012), the used feedstocks (typically mineral and inor-

ganic components) and the results obtained (“colloidal precipitates”) were poor imita-

tions of living phenomena, mainly because they lacked the “synthetic power of

transforming small ‘building stones’ into the complicated compounds specific for each

organism” which, according to Loeb, “is the ‘secret of life’ or rather one of the secrets

of life” (Loeb 1916). This metabolic failure of Herrera’s, Burke’s, Leduc’s and some

others’ chemical constructs was thus its Achilles’ heel to the eyes of the earliest bio-

chemists –see, for instance, the criticisms to Leduc’s constructs by (Oparin 1938) and

to Herrera’s experiments by (Oparin 1957). Nevertheless, these biochemists recognized

that having a deep knowledge of the chemical complexity of cells was the only way to

start the path of the synthetic approach, much like the intellectual and heuristic pro-

gression that occurred with synthetic organic chemistry, starting in the nineteenth cen-

tury and pursuing, in a stepwise manner, the synthesis of increasingly complex

molecules. Thus, for the incipient biochemists the early Synthetic Biology efforts were

not completely meaningless but they were premature or merely naive (Loeb 1916; de

Gregorio Rocasolano 1917; Rodríguez Carracido 1917). However, these criticisms con-

trasted with the popularity achieved by the artificial plants made à la Leduc, even de-

cades after his publications, as reflected for instance in Thomas Mann’s passage in his
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novel “Doctor Faustus”, which recreates the atmosphere of surprise and contradictory

feelings before the osmotic growths prepared by the father of the composer Adrian

Lewerkühn.

Loeb was particularly well positioned to criticize those untimely attempts to

synthesize life, given his rigorous physicochemical approach to living phenomena. With

his discovery of artificial parthenogenesis in 1899, he was convinced that fertilization

and development were no longer an issue of morphology but of physics and chemistry.

He never regarded or presented the induction of egg development by changing the

chemical nature of the solution as an artificial synthesis of life. That was the task for

journalists with their sensationalist headlines: “Science nears the secret of life. Professor

Jacques Loeb develops young sea urchins by chemical treatments. Discovery that

reproduction by this means is possible a long step towards realizing the dream of biolo-

gists, ‘to create life in a test tube’” (The Chicago Tribune, November 19, 1899). Thus,

Loeb likely represents the first case of an experimental scientist publicly exposed by

newspapers with the label of the “creation of life” ambition (Pauly 1987), albeit not dir-

ectly related to the study of the historical origin of life or the empirical reproduction of

spontaneous generation, as was the case of Herrera, Leduc or Burke, but engaged in

unveiling the ‘secret of life’.

The runaway excitement in the newspapers forced him to declare in the journal

Science: “In view of the fact that a number of daily papers have printed reports con-

cerning alleged or real experiments of mine I wish to state: 1. That none of the state-

ments printed in the newspapers have been authorized by me. 2. That whatever I may

have to say about my work will be published in scientific journals.” (Loeb 1901). But

this announcement did not prevent more grandiose slogans: “Chemical creation of life”

(The New York Times, March 1,1905), “Creates life by chemistry” (The Chicago Tribune,

March 1, 1905), “Dr. Jacques Loeb […] has succeeded in demonstrating how life may

be produced by artificial means” (The New York Times, December 3, 1913) (quoted by

Turney 1998). The atmosphere was also favorable to fake news: “The Mexican consul

in Trieste reports that Prof. Herrera, a Mexican scientist, has succeeded in forming a

human embryo by chemical combination” (The New York Times, October 4, 1910). At

any rate, Loeb was clearly uncomfortable with the way that newspapers treated his dis-

coveries but, at the same time, his firm mechanist ideology led him to legitimate, as

stated before, the synthesis of life as the “goal of biology” (Loeb 1906). Turney (1998)

pointed out Loeb’s ambivalent attitude since, while opposing wild journalistic exaggera-

tions on his research, he strongly encouraged young scientists with his mechanist and

synthetic research program for biology. A possible explanation is that, in spite of pro-

posing experimental abiogenesis as the ultimate aim in biology, he certainly disliked

the possibility of his work being associated with the objects obtained by people like

Leduc or Burke, presented by the popular press –and represented in popular culture–

as truly instances of artificial living forms, but that found in Loeb one of their firmest

detractors (Loeb 1916).

Writing in Scientific American, Benjamin C. Gruenberg established a clear distinction

between the approaches of Leduc, Burke and others to artificial life, versus the experi-

ments of Loeb and others on artificial parthenogenesis (Gruenberg 1911b; Gruenberg

1911a). “From time to time we are informed that the Riddle of the Universe has been

solved by the artificial production of ‘life’ from non-living materials” affirms Gruenberg,
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“but each time we wondered how it was done, for a few days, and then find out that it

wasn’t done at all” (Gruenberg 1911b). Echoing the biochemists’ criticism based on life

chemical complexity (still largely unknown at that time) to the “creation of artificial

life”, Gruenberg insisted: “The failure of scientists so far to produce ‘artificial life’ is not

to be charged against the science of biology. Very few of the attempts to produce ‘artifi-

cial life’ have been made by biologists, who realize too well the complexity of the prob-

lems involved. The biologists will be satisfied for a number of years to come if they

succeed merely in analyzing what goes on in a living cell, in terms of physical and

chemical processes. From time to time they will attempt to imitate the structure or a

process by means of a working model; but they will not speak of artificial life until they

are quite sure of all the conditions that play a part in this most intricate of phenomena”

(Gruenberg 1911b). As the following examples show, although Gruenberg did not men-

tion how journalists would contribute to the construction of the popular vision of

making life in the laboratory, his prediction about the scientists’ cautious approach to

artificial life was, to say the least, naive.

Whilst the earliest synthetic biologists’ yearnings were eclipsed by the moleculariza-

tion of biology, some scientists explored the border between inanimate and animated

matter in the emergent discipline of virology. The crystallization of the mosaic tobacco

virus (TMV) by Wendell M. Stanley (Stanley 1935) had an enthusiastic reception by

both scientific circles and popular media. At that time, the dominant view was that vi-

ruses and genes were made out of protein. Retrospectively, and thanks to the accurate

work of several historians of science, we are able to recognize the diversity of methodo-

logical issues associated to Stanley’s observations, the conceptual mistakes and intellec-

tual biases in the interpretation of his experiments, and the role played by himself and

his institution (the Rockefeller Institute at Princeton) in the construction of a “revolu-

tionary discovery” (Kay 1986; Helvoort 1991; Creager 2002). At any rate, Stanley

seemed comfortable with the sensationalism elicited by his work and, through inter-

views and newspaper headlines, he promoted his ambitions as a researcher and the

image of a scientist working in an almost philosophical field, namely, the nature of

viruses as chemicals inhabiting the “twilight zone of life” (Kay 1986). It is of note that,

at that time, these infective agents were generally seen as intermediate stages between

the simplest living organisms and inanimate matter (Kay 1986; Helvoort 1991; Sum-

mers 2014). Therefore, the crystallization of TMV was presented, not surprisingly, as a

“life in the making” effort and that “in the light of Doctor Stanley’s discovery, the old

distinction between life and death loses something of its validity” (The New York Times,

29 June, 1935, cited by (Kay 1986).

How were Stanley’s achievements perceived by more specialized observers? Barclay

Moon Newman, columnist of the popular science journal Scientific American, also

labeled the purported TMV crystals as discoveries in the “twilight zone between life

and non-life” (Newman 1937). His commentary was on the significance of bacterio-

phages, independently discovered by Frederick W. Twort and Félix d’Herelle in 1915

and 1917, respectively (Podolsky 1996; Summers 1999), and Stanley’s observations on

TMV (Stanley 1935) in the context of a general discussion on the nature of genes and

enzymes. Newman asserts that “it has astonished the scientific world that a single mol-

ecule can be the causative organism of a disease. How can a crystal be made up of liv-

ing molecules?”, since the ability to crystalize was generally accepted as a property that
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was exclusive of inanimate matter, crystals of the causative agent of a disease with the

ability to reproduce when in contact with the right host, would represent “an

organization at the threshold of life”, and, thus, “in it we discover how the stages of in-

creasing complexity of atomic combination have at last scaled up to the realm of life”.

In a grandiose context of cosmic evolution, well inserted in the tradition of a progres-

sivist thinking (Podolsky 1996), Newman considers the recent discoveries on the “virus

molecule” (i.e. TMV) and phages as indicative of intermediate steps of an ascending

scale of complexity from “unorganized matter” to “the order of life”.

The interest of John B. S. Haldane in many different aspects of life, including discus-

sions on its nature, origin and eventual synthesis (Dronamraju 2017), is well known. In

a series of popular science articles in the Sunday Chronicle, Haldane considered some

“Unsolved problems of science”, and one of the chosen topics was “Can we make life?”

(Haldane 1940). When discussing the frontier between the living and non-living,

Haldane examined Stanley’s crystallization of TMV and concluded that “here, then, is a

chemical substance which may be kept in a bottle and shows no sign of life; but given

the right food it can reproduce itself”. For him, “the gap between chemistry and life has

been very much narrowed”, reflecting the enormous impact of Stanley’s experiments on

influential scientists like Haldane, while critically opposing to the popular press sensa-

tionalism. Thus, accepting the protein nature of the virus, for Haldane it was only a

matter of further technical development to achieve the artificial building up of a

complete virus “within the next thirty years”. Incidentally, the total chemical synthesis

of the polio virus genome was described by Cello et al. (2002). In brief, despite Stanley’s

outstanding claims, Haldane still considered that life hadn’t been synthesized yet, and,

going further in his discussion, he affirmed that “it may be that artificial life of a simple

character will be made in the laboratory long before we understand the process going

on inside the cells of more complicated animals and plants”. Interestingly, his vision

clearly contrasts with the engineering ideal represented by the now very famous post-

humous sentence by physicist Richard Feynman “what I cannot create I do not under-

stand”, widely quoted by contemporary synthetic biologists. Could we build a cell

without knowing every detail of its intimate functioning? This seems the case at least

in the design of a bacterium with a minimal genome in which almost one third of the

required genes for life are of unknown function (Hutchison 3rd et al., 2016).

It is worth noting that the opinions expressed by Newman (1937) and Haldane

(1940) eloquently exemplify the enthusiastic reception of Stanley’s experiments by a

part of the scientific community, but with a different emphasis about their deeper

scientific implications. The discovery of bacteriophages was an illuminating observation

for Haldane in the context of his pioneering paper about the origin of life, in which he

refers to the work of Twort and d’Herelle (Haldane 1929). He accepted the bacterio-

phage as a possible “missing link” in the evolution from inert to living matter in the

primitive Earth, but, as pointed out by Podolsky (1996), his proposal was closer to

considering the bacteriophage as an heuristic model rather than a real evolutionary

stage, since for Haldane life was too dynamic and complex to be reduced to a simple

molecule. Thus, Haldane’s model evolved in parallel to scientific knowledge and,

25 years after his first proposal, he invoked a more elaborated scheme with “the enclos-

ure of several different self-reproducing polymers within a semipermeable membrane”

as “the critical event which may have best be called the origin of life” (Haldane 1954),
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definitively considering bacteriophages as an operational model for the earlier stages of

life (Podolsky 1996). During the Wakulla Springs International Conference on the

Origin of Life in 1963, Haldane revised his ideas on the natural emergence and artificial

synthesis of life, suggesting that “the initial organism may have consisted of one

so-called ‘gene’ of RNA specifying just one enzyme” catalyzing the required reactions

for RNA replication and protein synthesis (Haldane 1965). In this way, Haldane

contributed also to a scientific debate in the 1960s on the origin of the genetic material

and its associated minimal functions, with proposals from several scientists, including

Alexander Rich, Carl Woese, Leslie Orgel and Francis Crick (Lazcano 2012). Haldane

was still convinced of the importance of the synthetic approach to life and proposed

that “if we have not committed planetary suicide, some of us, or of the next generation,

will try to make a living organism”. As he emphasized during the following discussion

(transcribed in the proceedings of the meeting), he was more interested in determining

the “specifications for a synthetic organism” than in a “deduction as to what the first

organism was”. For him, in the mid-1960s, artificial life was still a legitimate, attainable,

not yet realized scientific goal. Following a genocentric view of life, he suggested that

“the first synthetic organisms may have been something like a tobacco mosaic virus,

but including the enzyme or enzymes needed for its replication”, implying that the

presence of any sort of “semipermeable membrane” in our test tube assays for synthetic

organisms was, therefore, unnecessary and could differ from the primitive living stages.

As it is easy to understand, and Haldane’s charismatic contributions constitute a wonder-

ful example, the discussions and the experimental approaches to the origin of life have al-

ways been a fertile field for artificial life imagination. The founding fathers of the discipline,

Oparin and Haldane, were independently proposing the experimental approach to artificial

living constructs as a way to evade mere speculations on this topic (Haldane 1929; Oparin

1938). But, surprisingly, even the simplest simulations, as the first experimental set to valid-

ate one of Oparin’s postulates –namely, the abiotic synthesis of life building blocks under

primitive conditions– published by Stanley L. Miller (Miller 1953), elicited media enthusi-

asm but also raised concerns about the possibility to synthesize life in a chemical laboratory.

Even Miller himself was astonished by the wide media coverage of his paper (Miller 1974).

A Gallup poll performed after Miller’s experiment announcement delivered a majoritarian

negative (78%) versus a slight affirmative support (9%) and 13% of “don’t know” to the ques-

tion “would it be possible to create life in a test tube?”. So the skeptical headlines stated that

“Many doubt science may create life” (Los Angeles Times, June 8, 1953).

A remarkable example of a scientific discovery mistaken for the synthesis of life is Arthur

Kornberg and coworkers description of the synthesis of a phage DNA genome in a test tube

by a purified bacterial enzyme with polymerase activity (Goulian et al., 1967). The synthetic

DNA showed the same structure, sequence and infectivity as the natural viral genome. As

Kornberg states in his autobiography (Kornberg 1991), he took personal care that the news

office of his institution, Stanford University, would describe the work with accuracy

but cautioning journalists during the press conference that the experiment had

nothing to do with “synthesizing life in a test tube”. That same day, during a state-

ment at the Smithsonian Institution, President Lyndon B. Johnson referred to the

work and said “some geniuses at Stanford University have created life in the test

tube!”. The next day, a frustrated Kornberg read all the newspaper stories about

his work beginning with the presidential hyperbole (Kornberg 1991).
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Biochemist John H. Northrop, who together with James B. Sumner established the

protein nature of enzymes –both biochemists shared the Nobel Prize in Chemistry

1946 with Stanley–, was a former collaborator of Loeb and, as late as 1961, considered

that artificial parthenogenesis experiments “are still, I believe, the nearest approach to

the creation of life” (Northrop 1961). As a strict materialist-experimentalist in the best

Loebian tradition, he emphasized that the “failure to create life in the laboratory has

given rise to a number of unnecessary assumptions” including the existence of “some

intangible force”. As an active investigator in bacteriophage research in the 1930s, Nor-

throp concluded that, from a biochemical and metabolic point of view, viruses cannot

be considered alive; otherwise, many virology experiments should be viewed as

instances of creation of life (Northrop 1961). However, by advocating a minimalist

notion of what life is –“a living system [is] one that can use energy to carry out the syn-

thesis of more of itself”– he considered that the polymerase reaction described by

Kornberg and coworkers “represents the simplest living system” (Northrop 1961). In

that sense, Northrop’s position was closer to President Johnson’s than to Kornberg’s.

The seventies, eighties and nineties of the twentieth century were characterized by

the explosion of molecular biology and biotechnology (Morange, 2003). In the last

decade of the century, and with an unprecedently short delay, transgenic plants were

created, commercialized and spread worldwide to become a very significant part of all

the crops grown today (for a complete report, see ISAAA 2016). The development of

biotechnology and related disciplines, namely metabolic engineering, during the last

years of the past century, yielded impressive reports on synthetic biology avant la

lettre; the best example being the so-called Golden Rice, a genetically engineered rice

with a complete metabolic pathway leading to the synthesis of high levels of provitamin

A. The Golden Rice was specifically made to prevent the severe symptoms of Vitamin

A deficiency, and it was first published in Science in 2000 (Ye et al. 2000). It may some-

how be considered as a shift of paradigm from biotechnology-issued GM plants to-

wards synthetic-biology-issued ones, not because of the strict engineering principles

being used, but because of the degree of sophistication of the artificially modified meta-

bolic pathway (Porcar and Peretó 2012).

Synthetic biology today: The return of the biomachinery
It has to be stressed, though, that contemporary, sensu strictu synthetic biology basic-

ally relates to research in biological engineering performed during the twenty-first cen-

tury, and that this young –two decades-old– research field is characterized by a

renaissance of the biomachine assumption together with an explosion of associated

buzzwords (Peretó and Catalá 2007; de Lorenzo and Danchin 2008; Porcar and Peretó

2016), and by an active search and development of parallelisms between synthetic biol-

ogy and industrial and electric engineering. This has created some conflicts among

synthetic biology practitioners, since biologists and engineers tend to have contrasting

views on the nature of life, its complexity and its amenability to rational design (Delgado

and Porcar 2013). In general, the engineering view has prevailed and, as a consequence,

both the scientific literature and the press releases on synthetic biology tend to show a

mechanistic view on biotechnology.

One of the most famous quotations evidencing the purely engineering conception of

the living matter is Drew Endy’s statement on emergent properties, a key feature of life:
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“Engineers hate complexity. I hate emergent properties. I like simplicity. I don’t want

the plane I take tomorrow to have some emergent property while it’s flying” (Edge

2008). The message here is clear: machines are more trustworthy than organisms, and

thus the latter have to be “machinised” to become reliable. The same author, in another

interview a few years later, went further in the description of rational design of syn-

thetic organisms by proposing what he considers a realistic –yet futuristic– way to

build a biological laptop: “fill up the can with sawdust, add some programmed wood

fungus (…) I come back a week later, and I shake out all the extra loose sawdust and

spent materials, and out comes my new laptop” (Ananthaswamy 2014). Finally, in their

provocative book “Regenesis: How Synthetic Biology will reinvent nature and our-

selves”, Church and Regis (2012) describe a rather similar example: a plant so deeply

engineered to develop into… a house (Church and Regis 2012). Both claims share a

strikingly blurred boundary between the metaphor and the prediction. The point here

is whether those public declarations have to be taken literally. How could engineered

plant or fungal tissues develop into electric conductors, transparent screens or win-

dows, mobile components, etc.? What would the fungal computer and the plant-house

look like? Like a real laptop and a ready-to-move-in house or like a rough abacus and a

giant pumpkin, respectively?

In 2010, a viable bacterial cell with a transplanted, chemically synthesized chromosome

was reported in an article in Science entitled “Creation of a bacterial cell controlled by a

chemically synthesized genome” (Gibson et al., 2010). In the press conference that

followed, the leader of the research group, Craig Venter stated: “this is the first

self-replicating species we’ve had on the planet whose parent is a computer”. That state-

ment, and the use of the word “creation” to describe an artificial version (almost com-

pletely a copy) of a natural genome, raised many criticisms (Table 1) including a

well-balanced editorial in The Guardian (Anonymous 2010). A wide consensus against

the hype of these declarations did not prevent, however, the discovery making the head-

lines worldwide, most of which echoed Venter’s pitch by highlighting that the first syn-

thetic cell had indeed been created.

Interestingly, this and other subsequent reports on artificially built genomes or chro-

mosomes (Baker 2011; Richardson et al. 2017; Mercy et al. 2017) coincided in time with

a peak of not only written news, but also images and cartoons dealing with synthetic

biology. Domínguez et al. (2014) studied a set of cartoons on synthetic biology pub-

lished in Europe in three languages and grouped them in five main blocks: mystic/reli-

gious (playing God); monstrous (Frankenstein-like); engineering (biomachine

metaphors); descriptive (no clear positioning); and comical. Although most of the car-

toons were classified as not inherently negative, the high rate of sensationalist ones –

particularly those of the monstrous group– supported the authors’ advice that synthetic

biologists should choose their metaphors more carefully (Domínguez et al. 2014). Inter-

estingly, one of the co-founders of the discipline, Drew Endy, coauthored with Isadora

Deese a cartoon, drawn by Chuck Wadey and published in Nature five years before

Venter’s high-profile breakthrough. The cartoon, entitled “Adventures in Synthetic

Biology” describes how a kid discovers the tools to engineer organisms. This is an un-

common and commendable dissemination effort in a field in which a flow of informa-

tion with the public is much needed, although its publication in a scientific journal

certainly restrained the target audience of the message. Interestingly, the ETC group,
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which describes synthetic biology as “extreme engineering”, prepared in 2009 a comic

to denounce the risks of synthetic biology, but it also displayed many similarities with

later publication in Nature, since it also included similar representations of engineered

DNA being injected into cells, which could consequently mutate (http://www.etcgrou-

p.org/sites/www.etcgroup.org/files/cartoons/etcventertoons_story_of_lg.jpg). For an un-

informed reader, it is difficult to identify which of the cartoons described above has

been made by pro- or anti-synthetic biology members. In fact, the comic in Nature

shows far more spectacular –and frightening– unexpected effects of bioengineering

than the anti-synthetic biology cartoon.

Images, in cartoons or elsewhere, can be powerful visual metaphors, and synthetic biol-

ogy is the paradise of metaphors. Biomachines, chassis, devices, circuits, factories… the

list is endless to the point that it is often difficult to identify whether a term is used either

in a metaphoric or realistic sense (de Lorenzo 2011). The use and effects of metaphors

has recently been reviewed by Boldt (2016; and this thematic issue) and by McLeod and

Nerlich (2017), the latter arguing (italics in the original text) that: “it is important to think

about metaphors because they are not only used to explain the world, but they also affect

how we think about the world” and thus claim for a systematic study “of the normative

implications, and associated moral and ethical assumptions”. This leads us to the complex

issue of the communication, in the broadest sense, between scientists and society, and

between society and scientists. The media are somehow intermediate actors, and their

view on synthetic biology is, in general, positive, in contrast with the less consensus

in the views among policy makers, as it has been reported in the case of Dutch

leaders (Ancillotti et al. 2016).

As we have discussed in the present article, the history of synthetic biology is rooted

in the quest of producing artificial life, a common leitmotif of many cultures at all

Table 1 Several examples of headlines generated by J. C. Venter Institute achievements
(milestones after JCVI website: https://www.jcvi.org/publications)

Milestone Headline Reference

Bacterial genome
transplantation (Lartigue et al.
2007)

“Playing God. How scientists are creating life forms or biodevices
that could change the world”

Newsweek
June 3,
2007

First synthetic bacterial
genome (Gibson et al. 2008)

“Playing God: the man who would create artificial life” Independent
January 25,
2008

First self-replicating synthetic
cell (Gibson et al. 2010)

“And man made life. The first artificial organism and its
consequences”

The
Economist
May 20,
2010

“Scientist Craig Venter creates life for first time in laboratory
sparking debate about ‘playing god’.
Artificial life has been created in a laboratory for the first time by
a maverick scientist.”

The
Telegraph
May 20,
2010

“American scientist who created artificial life denies ‘playing
God’.
Craig Venter, the American biologist who has created artificial
life in a laboratory for the first time, has defended himself
against accusations he was ‘playing God’.”

The
Telegraph
May 21,
2010

First minimal cell (Hutchison
3rd et al., 2016)

“Breakthrough in synthetic biology is far from ‘playing God’.
The creation of a cell with the minimal number of genes
necessary for life is to be applauded - mostly for what it tells us
about our ignorance.”

New
Scientist
March 30,
2016
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times. And this subject has always been –and still is– of the highest interest for the

public. In the last century and, in particular, in the last two decades, scientific discover-

ies dealing with the manipulation of the living have had a constant, although at least

partially unconscious, crosstalk of information between practitioners and the public,

which has mainly taken place in the form of headlines, metaphors, images or very sim-

ple “informational pills” (almost always either false or largely inexact such as “artificial

life has been created”). In this crosstalk, the responsibility of scientists towards the pub-

lic is obvious, but their sensitivity to the feedback they perceive from society cannot be

ignored either, and some historical cases, as Loeb’s and Stanley’s relationship with social

media, eloquently illustrate such feedback. The intrinsic socio-cultural differences be-

tween scientists/engineers and the rest of the society cannot be erased, but the extreme

simplification merged with hype of some statements does not contribute towards a

transparent communication channel. Instead, a co-creation scenario would be very de-

sirable, in which decisions on at least the final goals as well as technical red lights of

bioengineering were agreed by all relevant stakeholders. In other words, rather than a

crosstalk based on press releases and headlines, co-development of goals and tools (in-

cluding metaphors) should be at least considered.

The development of a co-creation scenario in synthetic biology is a particularly challen-

ging issue. It has previously been reported how semantic issues affect public perception of

new technologies, the reaction being very different toward terms such as “GMOs” versus

“Genetic Engineering”, for example (Verseux et al. 2016). Likewise, synthetic biologists

are not necessarily good at estimating the knowledge of non-biologists (Verseux et al.

2016). These two issues may obviously distort communication and, combined with the

abuse of metaphors described above, may certainly difficult the development of a fruitful

co-creation scenario. In fact, the broadly acknowledged demand of a responsible research

and innovation RRI-based integration of a broad range of social actors, including synthetic

biology practitioners and social science and humanities scholars, has been proposed to re-

quire to move out from the “comfort zone” of the actors involved and to be developed

based on an empiric approach (Delgado and Åm 2018; Delgado and Åm, 2018).

As a conclusion, the authors cannot resist the temptation of contributing to the challen-

ging debate on the communication in synthetic biology by proposing a metaphor. A com-

munication event resembles a call, in the sense of a shout. The sound can be sent back by

obstacles and be received modified or distorted. On many occasions, it can also be re-

ceived with different intensities and distortions. The dialogue between practitioners of

synthetic biology and the public is thus not a frank and direct translation, but much like

one in which actors are distant, and reach each other with echoes, a distortion of the own

and others’ past statements. Those resonances are not under control of the emitters any

more but determine the current perception as well as the fate of synthetic biology.

Acknowledgements
JP thanks Carmen McLeod and Brigitte Nerlich for inviting him to participate in the “SBRC Symposium: Metaphors,
Synthetic Biology and Responsibility” held at the University of Nottingham in May 22, 2017, and where part of this
work was presented. Thanks are given to Kristie Tanner for her professional proofreading of the manuscript and to
two anonymous reviewers for helpful criticisms.

Funding
The laboratory work of both authors is supported in part by the Spanish Government (Helios, grant reference:
BIO2015–66960-C3–1-R co-financed by FEDER funds and Ministerio de Economía y Competitividad) and by the
European Union through the BioRoboost project, H2020-NMBP-TR-IND-2018-2020/BIOTEC-01-2018 (CSA), Project
ID 210491758.

Porcar and Peretó Life Sciences, Society and Policy  (2018) 14:19 Page 11 of 14



Authors’ contributions
Both authors conceived of the study, participated in its design and drafted the manuscript. Both authors have read
and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Institute for Integrative Systems Biology I2SysBio (UV-CSIC), Parc Científic de la Universitat de València, C. Catedràtic
José Beltrán 2, 46980 Paterna, Spain. 2Darwin Bioprospecting Excellence SL, Paterna, Spain. 3Department of
Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain.

Received: 19 March 2018 Accepted: 24 July 2018

References
Acevedo-Rocha, CG. 2016. The synthetic nature of biology. In K Hagen, M Engelhard, G Toepfer, Ambivalences of

creating life. Societal and philosophical dimensions of synthetic biology. 9–53. Heidelberg: Springer.
Ananthaswamy A.. Rewiring nature with synthetic biology. Discover, October issue. 2014. http://discovermagazine.com/

2014/oct/17-natures-technician. Accessed 25 Feb 2018.
Ancillotti M, Rerimassie V, Seitz SB, Steurer W. An update of public perceptions of synthetic biology: still undecided?

NanoEthics. 2016;10(3):309–25.
Anonymous. Synthetic cells: it’s life, but not as we know it The Guardian 2010 22 May. https://www.theguardian.com/

commentisfree/2010/may/22/craig-venter-synthetic-life-editorial. Accessed 25 Feb 2018.
Ausländer S, Ausländer D, Fussenegger M. Synthetic biology-the synthesis of biology. Angew Chem Int Ed. 2017;56(23):

6396–419.
Baker M. Synthetic genomes: the next step for the synthetic genome. Nature. 2011;473(7347):403, 405–8.
Benner SA. Synthetic biology: act natural. Nature. 2003;421(6919):118.
Boldt J. Metaphors, worldviews, ethics, and law. Berlin: Springer; 2016.
Burke JB. On the spontaneous action of radio-active bodies on gelatin media. Nature. 1905a;72(1856):78–9.
Burke JB. On the spontaneous action of radium on gelatin media. Nature. 1905b;72(1865):294.
Campos LA. Radium and the secret of life. Chicago: University of Chicago Press; 2015.
Cello J, Paul AV, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of

natural template. Science. 2002;297(5583):1016–8.
Church G, Regis E. Regenesis. How synthetic biology will reinvent nature and ourselves. Philadelphia: Basic Books; 2012.
Cleaves HJ, Lazcano A, Ledesma Mateos I, Negrón-Mendoza A, Peretó J, Silva E. Herrera’s “Plasmogenia” and

other collected works: early writings on the experimental study of the origin of life. New York: Springer;
2014.

Creager ANH. The life of a virus. Tobacco mosaic virus as an Exprimental model, 1930–1965. Chicago: The University of
Chicago Press; 2002.

de Gregorio Rocasolano A. Estudios Químico Físicos Sobre La Materia Viva. Zaragoza: Tipografía de Gregorio
Casañal; 1917.

de Lorenzo V. Beware of metaphors: chasses and orthogonality in synthetic biology. Bioengineer Bugs. 2011;2(1):3–7.
de Lorenzo V, Danchin A. Synthetic biology: discovering new worlds and new words. EMBO Rep. 2008;9(9):822–7.
Deichmann U. Chemistry and the engineering of life around 1900: research and reflections by Jacques Loeb. Biol

Theor. 2009;4(4):323–32.
Deichmann U. Crystals, colloids, or molecules? Early controversies about the origin of life and synthetic life. Persp Biol

Med. 2012;55(4):521–42.
Delgado A, Åm H. Experiments in interdisciplinarity: responsible research and innovation and the public good. PLoS

Biol. 2018;16(3):e2003921.
Delgado A, Porcar M. Designing de novo: interdisciplinary debates in synthetic biology. Syst Synth Biol. 2013;

7(1–2):41–50.
Domínguez M, Mateu A, Torgersen H, Porcar M. Cartoons on bacterial balloons: scientists’ opinion on the

popularization of synthetic biology. Syst Synth Biol. 2014;8(4):321–8.
Dronamraju K. Popularizing science. The life and work of JBS Haldane. New York: Oxford University Press; 2017.
Edge. A talk with Drew Endy. 2008 https://www.edge.org/3rd_culture/endy08/endy08_index.html. Accessed 25

Feb 2018.
Endy D. Foundations for engineering biology. Nature. 2005;438(7067):449–53.
Friedman DC, Ellington AD. Industrialization of biology. ACS Synt Biol. 2015;4(10):1053–5.
Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, et al. Complete chemical

synthesis, assembly, and cloning of a mycoplasma genitalium genome. Science. 2008;319(5867):1215–20.

Porcar and Peretó Life Sciences, Society and Policy  (2018) 14:19 Page 12 of 14

http://discovermagazine.com/2014/oct/17-natures-technician
http://discovermagazine.com/2014/oct/17-natures-technician
https://www.theguardian.com/commentisfree/2010/may/22/craig-venter-synthetic-life-editorial
https://www.theguardian.com/commentisfree/2010/may/22/craig-venter-synthetic-life-editorial
https://www.edge.org/3rd_culture/endy08/endy08_index.html


Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, et al. Creation of a bacterial cell controlled by a
chemically synthesized genome. Science. 2010;329(5987):52–6.

Goulian M, Kornberg A, Sinsheimer RL. Enzymatic synthesis of DNA, XXIV. Synthesis of infectious phage phi-X174 DNA.
Proc Natl Acad Sci U S A. 1967;58(6):2321–8.

Gruenberg BC. Artificial life. II. Making the non-living do the work of the living. Sci Am. 1911a;105(13): 272):285–6.
Gruenberg BC. The creation of ‘artificial life’. The making of living matter from non-living. Sci Am. 1911b;105(11):

231):236–7.
Haldane, JBS. 1929. The origin of life. Rationalist Annual, 3–10.
Haldane JBS. Unsolved problems of science: IV. Can we make life? In: Keeping cool and other essays. London: Chatto &

Windus; 1940. p. 23–30.
Haldane JBS. The origins of life. New Biol. 1954;16:12–27.
Haldane JBS. Data needed for a blueprint of the first organism. In: Fox SW, editor. The origins of Prebiological systems

and their molecular matrices. New York: Academic Press; 1965. p. 11–5.
Herrera AL. A new theory of the origin and nature of life. Science. 1942;96(2479):14.
Hutchison CA 3rd, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, et al. Design and synthesis of a

minimal bacterial genome. Science. 2016;351(6280) aad6253
ISAAA (International Service for the Acquisition of Agri-Biotech Applications) 2016. http://www.isaaa.org/resources/

publications/briefs/52/download/isaaa-brief-52-2016.pdf. Accessed 25 Feb 2018.
Kay LE. WM Stanley’s crystallization of the tobacco mosaic virus, 1930-1940. Isis. 1986;77:450–72.
Keller EF. Making sense of life. Explaining biological development with models, metaphors, and machines. Cambridge:

Harvard University Press; 2002.
Keller EF. Knowing as making, making as knowing: the many lives of synthetic biology. Biol Theor. 2009;4(4):

333–9.
Kornberg A. For the love of enzymes. The odyssey of a biochemist. Cambridge: Harvard University Press; 1991.
Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP, Hutchison CA 3rd, et al. Genome transplantation in bacteria:

changing one species to another. Science. 2007;317(5838):632–8.
Lazcano A. The biochemical roots of the rna world: from zymonucleic acid to ribozymes. Hist Phil Life Sci. 2012;

34(3):407–23.
Ledesma-Mateos I, Barahona A. The institutionalization of biology in Mexico in the early 20th century. The

conflict between Alfonso Luis Herrera (1868–1942) and Isaac Ochoterena (1885–1950). J Hist Biol. 2003;36:
285–307.

Leduc S. Théorie Physico-Chimique de La Vie et Générations Spontanées. Paris: A. Poinat; 1910.
Leduc S. La Biologie Synthétique. Paris: A. Poinat; 1912.
Loeb J. Unauthorized newspaper reports. Science. 1901;13(315):75.
Loeb J. The recent development of biology. Science. 1904;20(519):777–86.
Loeb J. The dynamics of living matter. New York: Columbia University Press; 1906.
Loeb J. The organism as a whole. From a physicochemical viewpoint. New York, London: G. P. Putnam’s Sons; 1916.
Loeb J. The proteins and colloid chemistry. Science. 1920;52(1350):449–56.
McLeod C, Nerlich B. Synthetic biology, metaphors and responsibility life Sci. Soc Policy. 2017;13:13.
Mercy, G, J Mozziconacci, VF Scolari, K Yang, G Zhao, A Thierry, et al. 2017. 3D organization of synthetic and scrambled

chromosomes. Science 355: eaaf4597.
Miller SL. A production of amino acids under possible primitive earth conditions. Science. 1953;117(3046):528–9.
Miller SL. The first laboratory synthesis of organic compounds under primitive conditions. In: Neyman J, editor. The

heritage of Copernicus: theories “pleasing to the mind”. Cambridge: MIT Press; 1974. p. 228–42.
Morange M. Histoire de la biologie moléculaire. Paris: La Découverte; 2003.
Morange M. A critical perspective on synthetic biology 1. Introduction: the rise of synthetic biology. HYLE. 2009;15(1):

21–30.
Nerlich B, McLeod C. The dilemma of raising awareness ‘responsibly.’. EMBO Rep. 2016;17(4):481–5.
Newman BM. The smooth slide up to life. Sci Am. 1937;156:304–6.
Nicholson DJ. The machine conception of the organism in development and evolution: a critical analysis. Stud Hist Phil

Biol Biomed Sci. 2014;48:162–74.
Nielsen J, Keasling JD. Engineering cellular metabolism. Cell. 2016;164(6):1185–97.
Northrop JH. Biochemists, biologists, and William of Occam. Annu Rev Biochem. 1961;30:1–12.
Oparin AI. The origin of life. New York: McMillan; 1938.
Oparin AI. The origin of life on the earth. New York: Academic Press; 1957.
Pauly PJ. Controlling life: Jacques Loeb and the engineering ideal in biology. New York: Oxford University Press; 1987.
Peretó J. Erasing borders: a brief chronicle of early synthetic biology. J Mol Evol. 2016;83(5–6):176–83.
Peretó J, Català J. The renaissance of synthetic biology. Biol Theor. 2007;2(2):128–30.
Peretó J, Català J. Darwinism and the origin of life. Evol Edu Outreach. 2012;5(3):337–41.
Peretó J, Català J. A reconciliation with Darwin? Divergent views on evolutionism in Erich Wasmann and Jaime Pujiula.

Biologists and Jesuits Mètode Sci Stud J. 2017;7 https://doi.org/10.7203/mètode.7.7996.
Podolsky S. The role of the virus in origin-of-life theorizing. J Hist Biol. 1996;29:79–126.
Porcar M, Peretó J. Are we doing synthetic biology? Syst Synth Biol. 2012;6:79–83.
Porcar M, Peretó J. Nature versus design: synthetic biology or how to build a biological non-machine. Integr Biol. 2016;

8(4):451–5.
Richardson SM, Mitchell LA, Stracquadanio G, Yang K, Dymond JS, DiCarlo JE, et al. Design of a synthetic yeast genome.

Science. 2017;355(6329):1040–4.
Rodríguez Carracido J. Los fundamentos de la bioquímica. Bol R Soc Esp Hist Nat. 1917;17:154–66.
Stanley WM. Isolation of a crystalline protein possessing the properties of tobacco mosaic virus. Science. 1935;81:644–5.
Summers WC. Félix d’Herelle and the origins of molecular biology. New Haven: Yale University Press; 1999.
Summers WC. Inventing viruses. Annu Rev Virol. 2014;1:25–35.

Porcar and Peretó Life Sciences, Society and Policy  (2018) 14:19 Page 13 of 14

http://www.isaaa.org/resources/publications/briefs/52/download/isaaa-brief-52-2016.pdf
http://www.isaaa.org/resources/publications/briefs/52/download/isaaa-brief-52-2016.pdf
https://doi.org/10.7203/m�tode.7.7996


Szathmáry E. From biological analysis to synthetic biology. Curr Biol. 2004;14(4):R145–6.
Turney J. Frankenstein’s footsteps. Science, genetics and popular culture. New Haven: Yale University Press; 1998.
van Helvoort T. What is a virus? The case of tobacco mosaic disease. Stud Hist Phil Sci. 1991;22:557–88.
Verseux C, Acevedo-Rocha CG, Chizzolini F, Rothschild LJ. Misconceptions of synthetic biology: lessons from an

interdisciplinary summer school. NanoEthics. 2016;10(3):327–36.
Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin a (beta-carotene)

biosynthetic pathway into (carotenoid-free) rice endosperm. Science. 2000;287(5451):303–5.

Porcar and Peretó Life Sciences, Society and Policy  (2018) 14:19 Page 14 of 14


	Abstract
	Introduction
	Chronicle of a synthetic life foretold
	Synthetic biology today: The return of the biomachinery
	Acknowledgements
	Funding
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

