How to study mandalas in contemporary synthetic biology discourse? Before discussing the results of the case study (the philosophy session) as such, allow me to briefly elucidate the methodology of a psychoanalytical approach to contemporary science. Rather than reflecting on molecules, molecular processes or synthetic cells, a psychoanalytical approach examines scientific research activities from an oblique perspective (Zwart 2017; cf. Babich 1994, p. 3), focussing on the interactions between scientific subjects and their objects (ranging from specific biomolecules up to organic or synthetic cells). At least three complementary strategies are available. First of all: discourse analysis, following the discursive flow (of academic papers, project descriptions or PowerPoint presentations produced by synthetic biologists) with evenly-posed attention (“gleichschwebende Aufmerksamkeit”) as Freud (1912/1943, 1917/1940, p. 297) once phrased it, focussing on certain concepts, terms or images that trigger the attention or catch the “philosophical ear” (Zwart 2017, p. 2). This method resulted in a first, exploratory analysis of three mandala-like illustrations (above), more or less randomly selected from the current synthetic biology literature.
A subsequent methodological option is to focus on a moment of commencement: a primal scene (Urszene or Anfang) of the research practice that eventually evolved into current synthetic biology discourse. An example of this approach is the discussion (above) of Rosalind Franklin’s crystallographic picture of DNA as a key-hole glance into the “essence” of life (“In the beginning, there was a photograph”).
A third and final option is to approach synthetic biologists, active in the field today, on the individual level. Rather than conducting interviews or participant observation, however, I opted for the Jungian technique of active imagination. During a philosophy session involving nine Ph.D. researchers enrolled in the synthetic cell project mentioned above, participants were invited to make a drawing of a synthetic cell. Below, a sample of four of these drawings is inserted. The session began with a short introductory lecture, but the mandala concept was not discussed until after the drawing assignment. I will now briefly analyse the results (Fig. 6).
What is remarkable, first of all, is that most of the drawings produced during the session are spherical. Following my conversations with senior researchers and principal investigators involved in the project, this need not be the case. For practical purposes, synthetic cells may well be cubical, or produced in dice-like formats. Most early-stage researchers involved in our session, however, envisioned the synthetic cell as a spherical entity (although one of the participants submitted a drawing of three spherical cells instead of one).
Most of the drawings, moreover, reflect a mandala-like shape (εἶδος). This notably applies to the two drawings depicted on the left. The bottom-right drawing can be regarded as “semi-mandala-like”, the overall shape being tubular or elliptic rather than spherical, but the upper-right drawing is definitely a non-mandala image. In their comments, the participants who produced Mandala-like drawings indicated that this shape for them expresses aspects of synthetic cells such as “equilibrium”, “balance”, “homeostasis”, “rational design” and “biomimesis”. On the other hand, the participant who produced the non-Mandala drawing commented that, for her, synthetic cells represent “artificiality”. More specifically, her drawing was meant to reflect the abundant “fullness” of cells, either artificial or living, compared to the empty cells spotted by Robert Hooke 1665.
One of the striking features of mandala-like cells depicted above, I would argue, is the number and position of the orifices (or “gates”, as Jung would call such features). In the selected drawings, four (on two occasions) or even eight (on one occasion) orifices (or gates) are located in a spherical membrane. The upper-left drawing is strikingly symmetrical, with evenly distributed orifices and a “symbolic” core (containing genetic information: the cell’s “program” or “sacred text”, located in the centre). In the lower-left mandala, the orifices are equally (symmetrically) distributed once again, but the genetic (symbolic) information is now wrapped in a second (nuclear) membrane. Another striking feature of the lower-left mandala is the straight and diagonal connecting lines between the gates, reminiscent of a Buckminster Fuller-like pattern or a La Plata street map. The drawing at the bottom-right side is semi-Mandala-like: skewed or elliptical rather than spherical, with four orifices or gates, one of which is more pronounced (reflecting what Jung would refer to as the quaternity ratio, 3:1). The biggest opening seems a kind of fistula, moreover, apparently created there on purpose, allowing for chemical substances to be administered. The non-mandala drawing (upper-right) reminds me of an egg-shaped organism, with a gut-like area on the left and two green features that look like eyes. Overall, without making any quantitative empirical claims (given the limited sample size), I would argue that (notwithstanding the various differences between these drawings), the mandala structure is a noteworthy feature.
From a Jungian perspective this is not only understandable, but also quite significant. As indicated, a mandala is an archetypal symbol of wholeness, and the synthetic cell can be regarded as a bio-molecular microcosm, a structure that contains and assembles “everything”: everything currently known about the biochemical structures and processes of cellular life, while allowing us to discern how all these processes and components are interconnected, with the cell membrane as the protective circle and the cell nucleus as the centre. Following Jung, besides representing the basic ground-plan or architecture of a synthetic cell, the mandala-like structure may also be regarded as a visual aid or roadmap for the process of building such a cell. In the course of the twentieth century, living cells were broken down into elementary molecular components as we have seen, representable with the help of alphabets of bio-scientific “characters” (symbols): the basic building blocks of life (nucleotides, genes, amino acids, proteins, etc.). The objective of building a synthetic cell is to bring all these components together again. Therefore, synthetic biology is often regarded as “holistic”, even by authors for whom the “esoteric” connotation of the term causes unease (Conti et al. 2007, p. 161).
Mandalas can be encountered in other research fields as well; it is not an exclusive feature of cell synthesis. In phylogenetic research, for instance (studying the evolutionary history of and relationships among organisms), “phylogeny mandalas” (Hasegawa 2017) are used to visualise the Tree of Life. An impressive example is the version available on the Global Genome Initiative portal, inserted below (http://ggi.eol.org/about). Here again, I would argue that this image reflects the objective to reassemble scattered genomics information into a comprehensive whole, a phylogenetic pantheon if you like, in order to assess what we have learned during the obliteration stage (Fig. 7).
In psychodynamic terms, the building of a synthetic cell may be regarded as a collective exercise in reparation. All the “partial objects” of life sciences research (chromosomes, ribosomes, membrane, lipids, and so on) are allocated a functional place within the synthetic cell as a holistic, all-encompassing, pantheon-like assembly. As a model or structure, it is an imaginative condensation of molecular biological knowledge, and the synthetic cell emerges gradually, step by step, through active imagination. The centre consists of the nucleus containing the program (λόγος) of the cell, the core concept which realises itself in the visible, functioning structure. Mandala-like representations mimic the basic (circular or egg-like) form (εἶδος) of a biological cell, while realising the program (λόγος) as well. Although a synthetic cell may not be an exact replica of a living biological cell (probably it will be a highly simplified version), it presents the general outline or model: the overall idea (εἶδος). This explains why most of the synthetic cells envisioned by the participants in the session described above mimic and realise the archetypal, spherical structure of a biological cell, exemplifying balance and homeostasis: the equilibrium of multiple counteracting and apparently incompatible forces (coniunctio oppositorum). A synthetic cell diagram reflects the archetypal form (εἶδος) of a mandala and may serve as a visual aid allowing researchers to envision and synthesise the various biochemical, biomolecular and bio-computational fragments into a comprehensive whole. Thus, the mandala represents the resurgence of the form (εἶδος), or rather: the synthesis (or reconciliation) of form (εἶδος) and formula (λόγος), but now in vitro.